Python: Numpy
Теория: Быстрые поэлементные операции
Чтобы проанализировать данные, можно провести множество разных операций:
- Сравнить значения
- Поискать минимальные и максимальные значения
- Найти суммы и произведения элементов
И это далеко не полный список всех доступных преобразований. В некоторых случаях вычисления над элементами требуют использования более сложных математических операций и функций. Именно под это заточена библиотека Numpy, которая позволяет не только готовить данные к обработке, но и проводить необходимые вычисления. В этом уроке мы разберемся, как эти вычисления работают и как применять их на практике.
Поэлементные преобразования и укладывание
Numpy помогает ускорить операции и упростить синтаксис — так происходит благодаря поэлементным преобразованиям. Он позволяет оперировать с данными разной размерности. Такой подход называется укладыванием.
Чтобы погрузиться в эту тему глубже, познакомимся с распространенными задачами с арифметическими операциями над данными и выясним, как работает укладывание элементов одного массива данных в другой.
Чтобы выполнять арифметические операции со стандартными структурами данных в Python, нужно использовать циклы. Их количество и вложенность зависит от размерности. Numpy работает по-другому — логика и синтаксические конструкции в операциях над массивами остается одинаковой для структур разной размерности. Для оптимизации и повышения качества кода циклы скрыты от пользователя.
Посмотрим на пример ниже. В нем показан ряд операций над одномерным массивом данных и числовым значением, которое поэлементно применяется ко всему массиву:
Циклы в примере выше отсутствуют. Как мы уже говорили, в Numpy это называется укладыванием. Укладывание элемента в массив было разобрано на примере вектора и числа. Однако укладывать можно не только один элемент, а любой массив подходящего размера — при условии, если структура большей размерности. Посмотрим на пример прибавления элементов вектора построчно к матрице:
Чтобы выполнить те же операции над двумя массивами, также не используются циклы. Все синтаксические конструкции остаются без изменений:
Для сравнения посмотрим, как выполняются аналогичные задачи над стандартными списками. Без циклов и генератора zip() в этом случае не обойтись:
Создатели Numpy целенаправленно разработали библиотеку, в которой выполнение функционала не зависит от размерности данных. В качестве примера приведены поэлементные операции над матрицами:
Во всех примерах выше операции с массивами Numpy производились по одному шаблону. Размерность данных не влияла на синтаксис — мы использовали одинаковые математические операторы, меняя только операнды: числа, вектора, матрицы.
Для сравнения изучим пример операций над матрицами, которые представлены стандартными списками. Здесь необходимо использовать циклы:
При работе со стандартными списками чем больше размерность, тем больше строк кода. К этому моменту стоит относиться внимательно, ведь длина кода делает его сложнее в поддержке и может приводить к возникновению ошибок.
Как это работает на практике
В качестве практического примера решим задачу, с которой сталкивается аналитик данных в своей работе. Возьмем исторические данные по продажам ноутбуков в сети из четырех магазинов за неделю. Попробуем посмотреть отклонения от средних показателей. Средние показатели могут быть вычислены по-разному в зависимости от среза данных. Так можно смотреть на ситуацию:
- Во всей сети магазинов
- В каждом магазине по отдельности
- С распределением по дням недели
Предположим, что из базы данных сервиса выгрузили продажи в виде списка списков значений, где внешний список объединяет списки продаж по каждому дню недели для четырех магазинов:
После инициализации данных в виде массива можно перейти к анализу отклонений от среднего по всей сети:
Средний показатель для всей сети не всегда подходит для анализа, поскольку у магазинов может быть разный объем продаж. Чтобы лучше понять ситуацию с продажами, найдем среднее по каждому магазину. В примере это среднее значение по столбцам матрицы продаж. Чтобы найти такие средние, используем метод mean() с параметром axis = 0:
Аналитику также может потребоваться информация о дневных отклонениях. Так, например, можно обнаружить просадку продаж по вине логистов и менеджеров. Для этого необходимо найти средние по дням. К матрице продаж надо применить метод mean() с параметром axis = 1:
В примере выше используется метод reshape() — он помогает преобразовать исходную строку средних в столбец. Это принципиально необходимо для того, чтобы вектор был уложен в матрицу именно по столбцам.
Выводы
В этом уроке мы узнали, что библиотека Numpy упрощает и оптимизирует вычисления с использованием языка Python. Для этого она применяет подход, который унифицирует интерфейс работы с массивами. Все арифметические операции над массивами производятся без циклов — с использованием только самих символов операций.
Также мы обсудили, что нет различия в синтаксисе для одномерных или двумерных данных. Более того, операции можно производить над массивами разной размерности, укладывая значения одного массива в другой.
Все эти подходы повышают скорость разработки программ и упрощают поддержку готовых решений. Теперь вы знаете часто встречаемые подходы, которые проводят арифметические операции над массивами данных с использованием укладывания.

